MATH 315: Fall 2024 <u>Assignment 8</u> Due: Friday, October 4

I. <u>Reading</u>

Read Sections IV ("The competitive hunters model") and V ("The predatorprey model") of Chapter 4: **Ecological Models: Interacting Species** of our text.

Read Appendix IV on Functions of Two Variables.

II. <u>Exercises</u>

Complete Exercise 33 of Chapter 3. Complete Exercises 11, 18, and 22 in Chapter 4.

To solve the problem, recall that the general solution of the second order differential equation $z''(t) = k^2 z(t)$ where k is a positive constant is

$$z(t) = A e^{kt} + B e^{-kt}$$

where A and B are arbitrary constants. [This is the "knowledge of differential equations beyond that demanded in the text."]

III. <u>MATLAB</u>

Create *MATLAB* versions of the competitive hunters and predator-prey models as they are presented in the text. Find the *MATLAB* analogues to Figures 4.9 and 4.12 in the text.

For **Predator Prey** model, set step size dt to be .001 and run the simulation from TIME = 0 to TIME = 2. The following four cases for initial levels (with corresponding values for K) give interesting graphs:

x_0	3	3	3	3
Уо	2	3	4	5
Κ	.143	.05	.01	.002

For the **Competitive Hunters** model, set step size dt to be .01 and run the simulation from TIME = 0 to TIME = 6. The following four cases for initial levels (with corresponding values for *K*) give interesting graphs:

x_{O}	9	9	1	1
Уо	5	6	1	.2
K	.81	.65	.91	.51