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Why Mathematics in Biolog y?

Probably the most significant event that occurred during the rise of man to
pre-eminence, from being merely ‘another animal’, was the development
and use of language. At first, language was only spoken, but it did enable
relatively large quantities of information to be communicated from one
individual to another. More than that, language also provided a means for
controlling and monitoring thought itself. The important point is that
language provides concepts which can be manipulated independently of
the objects to which they refer, and later it becomes possible to think
logically without reference to any particular objects at all. Hence, during
the history of man, abstract thought became feasible, and from this
beginning arose philosophy. '

If we had to select an area of application of language that has been
outstandingly successful, we should undoubtedly choose the expression of
human emotion. The evidence for this is clear when one considers the
achievements of oratory and literature. However, when it comes to con-

o veying scientific information, ordinary language is less successful. This is

because it is almost impossible to convey precise meaning, since most
words in a language have more than one meaning, even if these meanings
differ only marginally. Again, because of these various shades of meaning,
a particular word means a slightly different thing to different people. This
is fine for the literary use of a language where part of the onus for inter-
pretation lies with the reader or listener, but it is not so good for scientific
use, where data and hypotheses must be presented with complete

A long time, perhaps many thousands of years, after the rise of lan-
guage, a new kind of medium for transferring information from one
individual to another was evolving. This was at the time when the first of
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the ancient civilisations — Egypt and Sumer — were flourishing. These
civilizations, besides bejng the architects and builders of large buildings an
other monuments, also developed a calendar. Such achievements required
precision: precision in measurement, precision. in the subsequent manipuls

 tion of measurement, and precision in the transmission of such data to
other people. All this could be achieved through another kind of
language — the language of mathematics.

The mathematical language is just the opposite to ordinary language in
that its elements are precise and unambiguous, or at least should be. Every
quantity and symbol used can be accurately defined in terms of earlier
quantities and symbols already defined. Thus, mathematics is built up on
precision and fact, whereas ordinary languages are, to some extent, based
on the variability and imprecision of human feelings and emotions.

THE DEVELOPMENT OF A SCIENCE

The study of any science, viewed historically, consists of two main
phases. First it is studied almost exclusively from a qualitative point of
view; but after an initial period, quantitative methods come to be used
increasingly. One of the main reasons for this type of development, from
the qualitative to the quantitative, is that a science begins as an observa-
tional study, progresses to an experimental, and finally to a theoretical
study. At first, phenomena are observed as they occur in nature; later
scientific work consists of performing experiments, drawing inferences
from the results, and then trying to formulate general laws. By their
nature, some sciences have to make the jump from observation to theory
without the intervening benefits of experimentation. Astronomy is an
obvious example here, and it is remarkable that observational and
theoretical astronomy have proceeded side by side for several millennia.

At the present time, physics is the science which is pre-eminent in the
use of mathematics. Many physical phenomena are rather less complex
than are those of other sciences, and the subject has progressed through

. the stages of observation and experiment, and has emerged as.a theoretical
science. This is not to say that observation and experiment are not still
carried out in physics; the main point is that physics has reached the stage
in which there exists a substantial body of theory, mathematical in nature,
which has its origins in observation and experiment. In physics at the
present time, the experimental and theoretical sides of the subject are of
equal importance.

The phenomena of chemistry are often more complex than those of
physics, and this.subject has not progressed quite as far as physics on the
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theoretical side. Although there have been spectacular advances in theoreti-
cal chemistry in recent years, chemistry as a whole is still, at present,
somewhat more of an experimenial science than is physics.

In biology, the situation is very different. Firstly, biological phenomena
are highly complex; secondly, there is almost unlimited scope for pure
observation of biological phenomena. Hence it is mainly only in the
present century that biology has become an experimental science, whereas
experimental work in the physical sciences has been undertaken for several
hundred years. As a result, it is only now that ‘theoretical biology’ is
tentatively emerging. : -

From the above remarks, it would seem that mathematical theory is the
ultimate aim in a scientific discipline. This is true; not for its own sake,
but because in the last resort the phenomena of nature can only be
explained in the precise terms of mathematics. Consider this example from
physics.

Observation: a stick immersed in water at an angle to the surface
(other than a right-angle) so that part of the stick is out of the water and
part submerged; the stick appears bent at the surface of the water,

Experiment: a vessel of water is set up on the laboratory bench, and
rays of light are traced through the water for various angles of the incident
beam; it is found that at an air—water surface (assume that the vessel is
made of very thin glass) the ratio of the sine of the angle of the light beam
on the air side of the surface to the sine of the angle of the beam on the
water side of the surface is constant, and this constant ratio is called the
refractive index. :

Theoretical deductions: this experimental result can be used in con-
junction with facts gleaned from experiments on other phenomena oflight,
such as reflection, diffraction, interference, to establish knowledge on the
nature of light. For instance, it has been found that the velocity of light
in a dense medium is less than in a sparse one. This latter experimental
finding coupled with the result of the refraction experiment can be ana-
lysed mathematically to show that light travels in a wave form.

For this particular example, there is an obvious relationship between
observation, experiment, and theoretical deduction. Such examples can be
multiplied many fold. In chemistry, we observe a particular reaction, and
we experiment to find out the exact conditions under which the reaction
occurs. When we then enquire why this particular reaction occurs and not
some other, it is necessary to look to the concepts of physical and theoreti-
cal chemistry, both of which are founded on mathematics.

Whether or not all biological phenomena can be explained by the
physical sciences, or that ultimately it is found that the property of life is
‘something extra’, it is already quite evident that the manifestations of
‘life’ can be explained in terms of the physical sciences, particularly
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chemistry. Since the physical sciences are based on mathematics, so also,
indirectly, are the biological sciences. :

In summary, experimental results are usually in a quantitative form,
even in biology, and therefore sound theoretical deductions can normally
only be made by mathematical analysis. This is why, ultimately, mathe-
matics is indispensable to any science; and so any scientist, whatever his
or her speciality, should have an adequate knowledge of mathematics.

BIOLOGY, MATHEMATICS, AND STATISTICS

The mathematical model

From the penultimate paragraph of the previous section, one might
infer that the utility of mathematics to the biologist is indirect, arising
only after experimental results have been interpreted by the concepts of
physical science. This, however, is not so. Mathematics is applied directly
to the results of biological observation and experiment in a similar manner
to the physical sciences but, because of the complexity of the phenomena,
its application is much more difficult, :

In the present state of biological knowledge, it is impossible to apply a
rigorous mathematical analysis to a biological system, such as may be
applied, for example, to an electric circuit. What is done, however, is to
construct a mathematical model of the phenomenon in which we are

interested. Certain assumptions about the system have first to be made,
and put into mathematical form, These assumptions are based on current
knowledge obtained from previous observations and experiments. Next,
appropriate mathematical methods are applied to the assumptions to
achieve an end result which simulates the system under study. The simu-
lated result can then be compared with what actually happens. If agree-
ment between the theoretical result and the observed happening is good,
then we gain further insight into the process under study; and moreover,
we can use the model for predictive purposes. In any science, an ultimate
aim is prediction. For instance; in an electrical circuit we can predict how
the current will change for a given change of resistance, using the mathe-
matical description of the circuit. In a biological system that has been
‘described’ mathematically by means of a model, predictions of what will
happen under certain changes of conditions can also be made. If the results
of using the model do not agree with actuality, then one-or more of our
basic assumptions must be wrong (assuming the absence of mathematical
errors!), and so, in a negative sense, our knowledge is still increased. An
example of the construction of a very simple mathematical model is given
in Chapter 6. ‘

BIOLOGY, MATHEMATICS, AND STATISTICS §
Statistics in biology

There is yet another complication to the would-be user of quantitative
methods in biology,-and that is variability. The phenomenon of variability
is not confined- to biology, but arises whenever experimental work is under-
taken. Even in the physical sciences, repetitions of a single experiment will
give slightly different results, e.g. measurement of the refractive index of a
substance, or the location of an end point in volumetric analysis. This kind
of variability, which is called experimental variability or experimental error,
arises solely because a human being attempts to measure something; the
something does not change, but the reactions of the human being during
the conduct of the experiment do change. ‘

Experimental variability also occurs in biology, but here it is cori- -
siderably augmented by the variability inherent in biological material. If
we measure the refractive index of a block of glass very carefully, we are
safe in asserting that our result /s the refractive index of this kind of glass,
under the conditions of the experiment. On the other hand, if we measure
the increase in height of a sunflower plant over one day, we certainly
cannot say that this is the growth rate of sunflower plants in general, even
under the same experimental conditions. The same plant may have a
noticeably different growth rate at an earlier or later stage in its growth;
and even if we take two plants which germinated from the same source of
seed at the same time, they will almost certainly show different growth
rates at any instant, aside from experimental error. So to be able to make
any sort of general statement about the growth rate of sunflower plants of
a given age and under defined conditions, we have to measure several plants
and take an average. This immediately raises the question as to how reliable
our result is, and this cannot be answered without employing a branch of
mathematics known as statistics.

Even when no experiment is involved and one is only trying to sum-
marize observations usefully and build a model from them, a simple
mathematical approach may not be very satisfactory because of the
variability of biological material. A good illustration is afforded by
Example 10.3 on page 186. Read the general description of the situation
through, note that a mathematical expression is used to describe the situa-
tion, and then carefully read the questions asked, each one of which
obviously requires a single numerical answer. Now, without worrying about
how the answers were obtained, read the last sentence of each of the three
sections, and note that each answer is a precise figure. Bearing in mind that
a ‘cohort’ in this context is a natural stand of similar-aged plants, it is
quite obvious that these precise answers are only statements of likely
results around which actual results will deviate to a greater or lesser extent.
One immediately asks, ‘How much deviation can be expected?’. The deter-
ministic mathematical model that has been erected to describe the situation
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in this example cannot answer such a question. If, however, the same
model had been set up, but with an added feature — a probability struc-
ture — then we should be in a position to answer questions like the above,
The mathematical model would now be a stochastic model; it is much
more realistic, and more complex.

Both the mathematics of stochastic models, and of statistical methods
for the analysis of experiments, are based upon the same theoretical - ,
subject -— probability and statistics. It is a branch of applied mathematics
in the broad sense, not in the narrow sense that the term ‘applied mathe-
matics’ is often used to denote applications to physics. Therefore, proba-
bility theory and statistical science are based on mathematics, and a good
knowledge of the subject is necessary for their study. In this book, we
* shall not deal with probability and statistics, Our concern will be with
such topics in mathematics that are of a general nature, topics that have
direct biological relevance, and also those that form a basis for the study
of statistical science about which the modern biologist needs to know.
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EXAMPLE 10.3 .

In & cohort of foxglove (Digitakis prypures) plants, the number, y,
surviving at time ¢ (measured in months from the emergence of the
seedlings) was found to conform to the equation '

y= 100e —0.2310{

(a) What was the original number of s¢edlings in the cohort?" :

(b) What was the half-ife of the cohort, i.e. the time when half the
original number of individuals had died? B

(c) The foxglove is a biennial, germinating in spring and flowering in the
summer of the following year. Assuming that 15 months are required for
vegetative growth, how many individuals of the cohort would be likely to
survive to flower? . N : .

~ (a) Since timé is measured from seedling emergence, wé put ¢ = 0; then,
from the equation, y = 100, So the original number of seedlings was 100.
(b) To calculate the time at which half the number of seedlings have died,
we substitute the number surviving into the equation for y and solve for ¢.
In this case, half the original number surviving gives y = 50, and so

50-= 100e -0.2310¢
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0.5 = ¢ -0:2310¢

' Talcing theé reciprocal of both sides gives

02310 _ 5
Take natural logarithms of both sides
: ' ) 0.2310 = Jog, 2

Now
loge 2 = 0.6931,
and so '
= 0853
, 0.2310
Therefofe, 50% of the plants dic during the first three months from seed-
ling emergence. C :

{c) As we are told that 15 months are required for vegetative growth, we
merely substitute £ = 15 into the equation and solve for y.

= 100e -02310x15

ie.

y;— ' 1002 ~3465
or o
N y = 100/e3455
Now ¢®#%$=3198,andso ;
‘ y23.127

Hence, 3 plants are likely to survive to flower,

It should be noted that an exponential function, such as the one shown
in the above example, would be fitted todata in its linéar form, equation
10.16. In the foxglove cohort, observations,on the number of individuals
surviving would be made from tifne to time, and then a graph wotld be
plotted of log, (nimber of individuals) against time. The points should lie
roughly on a straight line, and ‘such a line may then be fitted in the way
mésntioned in Chapter'3 (page S1) and values of the constans log, # (and
hence ) and b obtained. S - :



