Stochastic Processes I

Probability Models

EXPECTED VALUE II

If we have a sequence of independent trials and the probability of a Success on a given trial is *p*, then the Expected Number of trials until we have a first Success is 1/p

Example Trial: Roll a Die Success: 5 Probability of Success: 1/6 Expected Number of Trials: 6

Method 3

Let E = Expected Number of Trials

$$E = 1 + (1 - \frac{1}{n}) E$$
$$\Rightarrow E - (1 - \frac{1}{n}) E = 1$$
$$\Rightarrow E(1 - 1 + \frac{1}{n}) = 1$$
$$\Rightarrow (\frac{1}{n}) E = 1$$
$$\Rightarrow E = n$$

Collecting Superheroes

# Collected	Probability of New Hero in Next Box	Waiting Time
0	1	1
1	5/6	6/5
2	4/6	6/4
3	3/6	6/3
4	2/6	6/2
5	1/6	6/1

Expected Number of Boxes 1 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1 = 6(1/6 + 1/5 + 1/4 + 1/3 + 1/2 + 1)

Coupon Collector Problem n superheroes Expected Waiting Time: n (1 + 1/2 + 1/3 + 1/4 + ... + 1/n)

 $\sim n \ln n$

Stochastic Processes And Markov Chains

А. А. Марков (1886).

Андрей Андреевич Марков (1856-1922)

Stochastic Process

A **Stochastic Process** is a process that moves in a sequence of *steps* through a set of *states* such that at each step, there are probabilities of being in each of the possible states.

Examples

- 1. The location of the President at noon on successive days.
- 2. Your GPA at the end of each semester.
- 2. Number of students arriving on time at each successive meeting of our class.
- 3. Closing value of the Dow Jones index at the end of each stock exchange session.
- 4. Democratic membership of the US Senate after each election.
- 5. Number of victories by Boston Celtics after each game.
- 6. Random Walk
- 7. Random Walk with Barriers
- 8. Outcomes of flip of a coin in a sequence of trials *2 states: Heads, Tails*

Probability of each state is 1/2, and is independent of outcomes on all previous trials.

- 9. Education level of successive generations of a family.
- 10. Patient's condition on successive days.
- 11. Roll a pair of dice and observe the sum.

State	2 or 12	3 or 11	4 or 10	5 or 9	6 or 8	7
Probability	1/36	2/36	3/36	4/36	5/36	6/36

12. Chutes and Ladders

More Examples

Flipping Coins I

Steps: Successive Flips
States: Outcomes of single flip = { Head, Tail }

Probability (State is *Heads* at Step 15) = 1/2

Flipping Coins II

Steps: Successive Flips
States: Number of Heads we have flipped = {0,1,2,...}

Probability(6 Heads at Step 15) =
$$\begin{pmatrix} 15 \\ 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}^6 \begin{pmatrix} 1 \\ 2 \end{pmatrix}^9$$

Steps: Successive Games

States:

- (a) Outcome of Game: Win, Lose
- (b) Total victories so far
- (c) Number of players injured

MARKOV PROCESS

Suppose we have a stochastic process with

• A finite number of states

• The probability of being in a particular state at the *nth* step <u>depends only on the state occupied at</u> <u>the preceding step</u>

Example: Social Mobility Steps: generations States: Professional, Skilled, Unskilled

		Children	(generation	n+1)	
		P	S	$oldsymbol{U}$	
Parents	Р	.8	.1	.1	
generation	S	.2	.6	.2	
n	$oldsymbol{U}$.25	.25	.5	

TRANSITION MATRIX

Markov Process

(a) States $S_1, S_2, ..., S_r$ and Steps

(b)Transition Probabilities pij = probability of moving from State i to State j in a single step

 p_{ij} = Pr[S_j at step(n+1) | S_i at step n]

Note: Each $p_{ij} \ge 0$

$$\sum_{j=1}^{r} p_{ij} = 1 \text{ for all } i$$

 p_{ij} 's are independent of n

(c) Initial Distribution

Two Special Types of Markov Processes

Regular Absorbing

Social Mobility Example

A representation of transition matrix \boldsymbol{P}

State Diagram

Tree Diagram: Probability that grandchild of unskilled will be unskilled.

Suppose $\vec{p}^{(0)} = (.1, .2, .7)$. What are $\vec{p}^{(1)}$ and $\vec{p}^{(2)}$, the distributions after 1 and 2 generations?

.295	.305	.40
(.7)(.25)=.175	(.7)(.25)=.175	(.7)(.5)=.35
(.2)(.2)=04	(.2)(.6) = .12	$(.2)(.2) = .0^{2}$

Arbitrary initial vector $\vec{p}^{(0)} = (a, b, c)$

so
$$\vec{p}^{(1)} = \vec{p}^{(0)}P$$

2nd generation:
$$\vec{p}^{(2)} = \vec{p}^{(1)}P = (\vec{p}^{(0)}P)P = \vec{p}^{(0)}P^2$$

For a Markov Process with transition matrix P, let $\vec{p}^{(k)}$ be the probability distribution after k steps; that is, the *i*th component of $\vec{p}^{(k)}$ is the probability of being in state *i* after k steps.

Lemma: $p^{(n+1)} = p^{(n)}P$ Theorem: $p^{(n)} = p^{(0)}P^n$

$$p_i^{(n+1)} = \mathop{a}\limits^n_{k=1} p_k^{(n)} p_{ki} = [\overline{\mathbf{p}^{(n)}} \mathbf{P}]_i$$

What is the Long Term Behavior?

$$\lim_{n\to\infty}\vec{p}^{(n)}=\vec{p}^{(0)}\lim_{n\to\infty}P^n$$

$$P = \left(\begin{array}{rrrr} .8 & .1 & .1 \\ .2 & .6 & .2 \\ .25 & .25 & .5 \end{array}\right)$$

Run the program MARKOV to test: