
Stochastic Processes 
and 

Markov Chains II 

 (1856-1922) 



Markov Process 

(a) States  S1, S2,..., Sr and Steps

(b) Transition Probabilities
 pij = probability of moving 

from State i to State j in a single step 

pij= Pr[ Sj at step(n+1) | Si at step n] 

Note: Each pij  ³   0 

 for all i 

pij’s are independent of n 

(c) Initial Distribution  
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Two Special Types of Markov Process 

REGULAR 
Some Power of the Transition Matrix 

Has All Positive Entries 

ABSORBING 

Social Mobility Example 
A representation of transition matrix P  

generation (n+1)   [children] 
P S U 

generation n P .8 .1 .1 
[ parents] S .2 .6 .2 

U .25 .25 .5 



An Absorbing Matrix 
step (n+1) 

A B C 
step n A 1 0 0 

B .2 .6 .2 
C 0 . 5 .5 

A is an Absorbing State 

B, C are Transient States 



What is the Long Term Behavior? 

Run the program MARKOV to test: 

seems to approach (.53, .26, .21) 

Can we find analytically? 

 

   
lim
n→∞


p(n ) =


p(0) lim

n→∞
Pn

P =

.8 .1 .1

.2 .6 .2
.25 .25 .5
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p(n )


w = lim

n→∞


p(n )

   

w =


wP  where 


w = (x,y,z) and x + y + z =1



 

 

Rewriting (1) and (2):

 

 

 

 
Substitute in (3): 

 

(x, y, z) = (x, y, z)
.8 .1 .1
.2 .6 .2
.25 .25 .5
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x = .8x + .2y+ .25z
y = .1x + .6y+ .25z
z = .1x + .2y+ .5z
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(1)   − .2x + .2y+ .25z = 0
(2)    .1x − .4y+ .25z = 0
(3)     .1x + .2y− .5z= 0

    
.25z = .2x − .2y
.25z = −.1x + .4y⇒ .2x − .2y = −.1x + .4y

    
⇒ .3x = .6y⇒ y = 1

2x

    
.1x + .2(.5x)− .5z= 0⇒ .2x = .5z⇒ z = 2

5x



Then   
becomes  

 

 

long term:  

    x + y+ z = 1

    
x + 1

2x + 2
5x = 1

    10x + 5x + 4x = 10

    19x = 10

    

x = 10/19
y = 5/19
z = (2/5)(10/19) = 4/19

 
10
19, 5

19, 4
19
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$  ≈ (.526, .263, .211)



Main Result on Regular Markov Chains 
and Examples  

Definition. A Markov Process is regular if 
some positive power of the transition matrix 
has all positive entries. 

Example.

P = 0 1
1
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Theorem: If P is the transition matrix of a 
regular Markov Process, then there is a 
vector w  all of whose components are 
strictly positive such that 

(1)  

(2) w is independent of  
(3) w is the unique probability vector

satisfying  

(4) 

(5) w is  a left eigenvector of P
associated with eigenvalue 1 

w = lim
n→∞
p(n)

p(0)

w =w P

lim
n→∞

Pn =
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w
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Example : If w = (x,y), then 

but x + y = 1 so 1 – x =2x  so x = 1/3  

and w = 

Check: 

(x, y) 0 1
1
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x = 0x + 1
2 y

y =1x + 1
2 y

⇒
y = 2x
y = 2x
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A Baseball Example 

         game (n+1) 
Win Lose 

game n Win .7 .3 
Lose .9 .1 

 

Can check by Induction that  so 

Solving by w = wP  gives  or 

  but  so  or 

   

= .7p+ .9(1− p),.3p+ .1(1− p)( )
p(2) = (.72+ .04p, .28− .04p)

   p
(1) = .7p+ .9(1− p),.3p+ .1(1− p)( )

  = (.9− .2p, .1+ .2p)

   p
(2) = (.72+ .04p, .28− .04p)
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lim
n→∞

p(n) =
3
4,14
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(x, y) .7 .3
.9 .1
!
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= (x, y)   (x, y)= (.7x+ .9y, .3x+ .1y)

  
x = .7x+ .9y
y = .3x+ .1y

⇒
−.3x = .9y
.9y = .3x

⇒ y = x
3   x+ y = 1 x+ x

3
= 1 x = 3

4



Eigenvalue/Eigenvector Analysis 

so   det
and  becomes 

so  or 

Since there are 2 distinct eigenvalues, there is a 2 x 2 invertible matrix S such that 

 so that  and hence 

The matrix S can be formed by taking right  eigenvectors associated with the 

eigenvalues  as its columns. An eigenvector associated with  is  and an 

eigenvector associated with  is . Thus we can let S = . T hen 
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P −λI( ) = 7
10 −λ( ) 1

10 −λ( )− 9
10( ) 3

10( )
  det P − λ I( ) = 0

λ2 −
8
10λ −

20
100 = 0

 ⇒ 5λ2 − 4λ −1= 0⇒ (5λ +1)(λ −1)= 0 λ = −
1
5  λ = 1

S −1PS =
1 0
0 −1
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And det(P - lI) = 0  becomes 
 

so  or 
Since there are 2 distinct eigenvalues, there is a 

2 x 2 invertible matrix S such that 
 so that  and hence 

The matrix S can be formed by taking right  
eigenvectors associated with the eigenvalues  as 
its columns. An eigenvector associated with l = 
1  is  and an eigenvector associated with l = -

1/5  is . Thus we can let S = . Then 

. 

λ2 −
8
10λ −

20
100 = 0
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Thus =

so we have

Pn = 1 1
1 −3
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