
First Links in the Markov Chain

This Article From Issue

March-April 2013

Volume 101, Number 2

One hundred years ago the Russian mathematician A. A. Markov founded a new
branch of probability theory by applying mathematics to poetry. Delving into the
text of Alexander Pushkin’s novel in verse Eugene Onegin , Markov spent hours
sifting through patterns of vowels and consonants. On January 23, 1913, he
summarized his findings in an address to the Imperial Academy of Sciences in St.
Petersburg. His analysis did not alter the understanding or appreciation of
Pushkin’s poem, but the technique he developed—now known as a Markov chain—
extended the theory of probability in a new direction. Markov’s methodology went
beyond coin-flipping and dice-rolling situations (where each event is independent
of all others) to chains of linked events (where what happens next depends on the
current state of the system).
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Illustration by Tom Dunne.

Markov chains are everywhere in the sciences today. Methods not too different
from those Markov used in his study of Pushkin help identify genes in DNA and
power algorithms for voice recognition and web search. In physics the Markov
chain simulates the collective behavior of systems made up of many interacting
particles, such as the electrons in a solid. In statistics, the chains provide methods
of drawing a representative sample from a large set of possibilities. And Markov
chains themselves have become a lively area of inquiry in recent decades, with
efforts to understand why some of them work so efficiently—and some don’t.

As Markov chains have become commonplace tools, the story of their origin has
largely faded from memory. The story is worth retelling. It features an unusual
conjunction of mathematics and literature, as well as a bit of politics and even
theology. For added drama there’s a bitter feud between two forceful personalities.
And the story unfolds amid the tumultuous events that transformed Russian society
in the early years of the 20th century.

Before delving into the early history of Markov chains, however, it’s helpful to have
a clearer idea of what the chains are and how they work.

Probability theory has its roots in games of chance, where every roll of the dice or
spin of the roulette wheel is a separate experiment, independent of all others. It’s an
article of faith that one flip of a coin has no effect on the next. If the coin is fair, the
probability of heads is always 1/2.
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This principle of independence makes it easy to calculate compound probabilities.
If you toss a fair coin twice, the chance of seeing heads both times is simply
1/2×1/2, or 1/4. More generally, if two independent events have probabilities p and
q , the joint probability of both events is the product pq .

However, not all aspects of life adhere to this convenient principle. Suppose the
probability of a rainy day is 1/3; it does not follow that the probability of rain two
days in a row is 1/3×1/3=1/9. Storms often last several days, so rain today may
signal an elevated chance of rain tomorrow.

For another example where independence fails, consider the game of Monopoly.
Rolling the dice determines how many steps your token advances around the board,
but where you land at the end of a move obviously depends on where you begin.
From different starting points, the same number of steps could take you to the
Boardwalk or put you in jail. The probabilities of future events depend on the
current state of the system. The events are linked, one to the next; they form a
Markov chain.

To be considered a proper Markov chain, a system must have a set of distinct states,
with identifiable transitions between them. A simplified model of weather
forecasting might have just three states: sunny, cloudy and rainy . There are nine
possible transitions (including “identity” transitions that leave the state
unchanged). For Monopoly, the minimal model would require at least 40 states,
corresponding to the 40 squares around the perimeter of the board. For each state
there are transitions to all other states that can be reached in a roll of the dice—
generally those from 2 to 12 squares away. A realistic Monopoly model
incorporating all of the game’s quirky rules would be much larger.

Recent years have seen the construction of truly enormous Markov chains. For
example, the PageRank algorithm devised by Larry Page and Sergey Brin, the
founders of Google, is based on a Markov chain whose states are the pages of the
World Wide Web—perhaps 40 billion of them. The transitions are links between
pages. The aim of the algorithm is to calculate for each web page the probability
that a reader following links at random will arrive at that page.

A diagram made up of dots and arrows shows the structure of a Markov chain. Dots
represent states; arrows indicate transitions. Each arrow has an associated number,
which gives the probability of that transition. Because these numbers are
probabilities, they must lie between 0 and 1, and all the probabilities issuing from a
dot must add up to exactly 1. In such a diagram you can trace a pathway that
defines a sequence of states—perhaps sunny, sunny, cloudy, rainy in the weather
example. To calculate the probability of this specific sequence, just multiply the
probabilities associated with the corresponding transition arrows.

The chain can also answer questions such as, “If it’s cloudy today, what is the
probability of rain two days from now?” The answer is found by summing the
contributions of all pathways that lead from the cloudy state to the rainy state in
exactly two steps. This sounds like a tedious exercise, but there’s an easy way to
organize the computation, based on the arithmetic of matrices.

First Links in the Markov Chain https://www.americanscientist.org/article/first-links-in-the-markov-chain

3 of 12 7/6/2022, 4:28 AM



Illustration by Brian Hayes.

The transition probabilities for a three-state Markov chain can be arranged in a
three-by-three matrix—a square array of nine numbers. As shown in the illustration
at right, the process for calculating multistage transitions is equivalent to matrix
multiplication. The matrix itself (call it P ) predicts tomorrow’s weather; the

product P × P , or P 2 , gives weather probabilities for the day after tomorrow; P 3

defines the probabilities for three days hence, and so on. The entire future unfolds
from this one matrix.

Given the hypothetical probabilities in the weather example shown at right, the
successive powers of the matrix rapidly converge to a stationary configuration in
which all the rows are identical and all the columns consist of a single repeated
value. This outcome has a straightforward interpretation: If you let the system
evolve long enough, the probability of a given state no longer depends on the initial
state. In the case of the weather, such a result is unsurprising. Knowing that it’s
raining today may offer a clue about tomorrow’s weather, but it’s not much help in
predicting the state of the skies three weeks from now. For such an extended
forecast you may as well consult the long-term averages (which are the values to
which the Markov chain converges).

Markov’s scheme for extending the laws of probability beyond the realm of
independent variables has one crucial restriction: The probabilities must depend
only on the present state of the system, not on its earlier history. The Markovian
analysis of Monopoly, for example, considers a player’s current position on the
board but not how he or she got there. This limitation is serious. After all, life
presents itself as a long sequence of contingent events—kingdoms are lost for want
of a nail, hurricanes are spawned by butterflies in Amazonia—but these causal
chains extending into the distant past are not Markov chains.
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On the other hand, a finite span of history can often be captured by encoding it in
the current state. For example, tomorrow’s weather could be made dependent on
both yesterday’s and today’s by creating a nine-state model in which each state is a
two-day sequence. The price to be paid is an exponential increase in the number of
states.

In trying to understand how Markov came to formulate these ideas, we run straight
into one of those long chains of contingent events extending deep into the past. One
place to start the story is with Peter the Great (1682–1725), the ambitious Romanov
tsar who founded the Academy of Sciences in St. Petersburg and fostered the
development of scientific culture in Russia. (Other aspects of his reign were less
admirable, such as the torture and murder of dissidents, including his son Alexei.)

At roughly the same time, elsewhere in Europe, the theory of probability was
emerging from gambling halls and insurance brokerages to become a coherent
branch of mathematics. The foundational event was the publication in 1713 of Jacob
Bernoulli’s treatise Ars Conjectandi ( The Art of Conjecturing ).

Back in St. Petersburg, the mathematics program prospered, although initially most
of the accomplishments were by imported savants. Visitors to the Academy
included two younger members of the Bernoulli family, Nicholas and Daniel. And
the superstar was Leonhard Euler, the preeminent mathematician of the era, who
spent more than 30 years in St. Petersburg.

By the 19th century indigenous Russian mathematicians were beginning to make
their mark. Nikolai Lobachevsky (1792–1856) was one of the inventors of non-
Euclidean geometry. A few decades later, Pafnuty Chebyshev (1821–1894) made
contributions in number theory, in methods of approximation (now called
Chebyshev polynomials) and in probability theory. Chebyshev’s students formed
the nucleus of the next generation of Russian mathematicians; Markov was
prominent among them.

First Links in the Markov Chain https://www.americanscientist.org/article/first-links-in-the-markov-chain

5 of 12 7/6/2022, 4:28 AM



Andrei Andreevich Markov was born in 1856. His father was a government
employee in the forestry service and later the manager of an aristocrat’s estate. As a
schoolboy Markov showed enthusiasm for mathematics. He went on to study at St.
Petersburg University (with Chebyshev and others) and remained there for his
entire career, progressing through the ranks and becoming a full professor in 1893.
He was also elected to the Academy.

In 1906, when Markov began developing his ideas about chains of linked
probabilities, he was 50 years old and had already retired, although he still taught
occasional courses. His retirement was active in another way as well. In 1883
Markov had married Maria Valvatieva, the daughter of the owner of the estate his
father had once managed. In 1903 they had their first and only child, a son who was
also named Andrei Andreevich. The son became a distinguished mathematician of
the Soviet era, head of the department of mathematical logic at Moscow State
University. (To the consternation of librarians, both father and son signed their
works “A. A. Markov.”)

An intellectual thread extends all the way from Jacob Bernoulli through Chebyshev
to Markov. In Ars Conjectandi Bernoulli stated the law of large numbers, which
says that if you keep flipping an unbiased coin, the proportion of heads will
approach 1/2 as the number of flips goes to infinity. This notion seems intuitively
obvious, but it gets slippery when you try to state it precisely and supply a rigorous
proof. Bernoulli proved one version; Chebyshev published a broader proof; Markov
offered further refinements.
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Markov’s later studies of chains of dependent events can be seen as a natural
continuation and generalization of this long line of work. But that’s not the whole
story.

By most accounts, Markov was a nettlesome character, abrasive even with friends,
fiercely combative with rivals, often embroiled in public protests and quarrels. We
get a glimpse of his personality from his correspondence with the statistician
Alexander Chuprov, which has been published in English translation. His letters to
Chuprov are studded with dismissive remarks denigrating others’ work—including
Chuprov’s.

Markov’s pugnacity extended beyond mathematics to politics and public life. When
the Russian church excommunicated Leo Tolstoy, Markov asked that he be expelled
also. (The request was granted.) In 1902, the leftist writer Maxim Gorky was elected
to the Academy, but the election was vetoed by Tsar Nicholas II. In protest, Markov
announced that he would refuse all future honors from the tsar. (Unlike Anton
Chekhov, however, Markov did not resign his own membership in the Academy.) In
1913, when the tsar called for celebrations of 300 years of Romanov rule, Markov
responded by organizing a symposium commemorating a different anniversary: the
publication of Ars Conjectandi 200 years before.

Markov’s strongest vitriol was reserved for another mathematician, Pavel Nekrasov,
whose work Markov described as “an abuse of mathematics.” Nekrasov was on the
faculty of Moscow University, which was then a stronghold of the Russian Orthodox
Church. Nekrasov had begun his schooling at a theological seminary before turning
to mathematics, and apparently he believed the two vocations could support each
other.

In a paper published in 1902 Nekrasov injected the law of large numbers into the
centuries-old theological debate about free will versus predestination. His
argument went something like this: Voluntary acts—expressions of free will—are
like the independent events of probability theory, with no causal links between
them. The law of large numbers applies only to such independent events. Data
gathered by social scientists, such as crime statistics, conform to the law of large
numbers. Therefore the underlying acts of individuals must be independent and
voluntary.

Markov and Nekrasov stood at opposite poles along many dimensions: A secular
republican from Petersburg was confronting an ecclesiastical monarchist from
Moscow. But when Markov launched his attack on Nekrasov, he did not dwell on
factional or ideological differences. He zeroed in on a mathematical error. Nekrasov
assumed that the law of large numbers requires the principle of independence.
Although this notion had been a commonplace of probability theory since the time
of Jacob Bernoulli, Markov set out to show that the assumption is unnecessary. The
law of large numbers applies perfectly well to systems of dependent variables if they
meet certain criteria.
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Illustration by Brian Hayes.

Markov first addressed the issue of dependent variables and the law of large
numbers in 1906. He began with a simple case—a system with just two states. On
the assumption that all four transition probabilities are greater than 0 and less than
1, he was able to prove that as the system evolves over time, the frequency of each
state converges to a fixed average value. Over the next few years Markov extended
and generalized the proof, showing that it applies to a broad class of models.

This series of results achieved at least one of Markov’s goals: It forced Nekrasov to
retreat from his claim that the law of large numbers implies free will. But the wider
world of mathematics did not take much notice. One thing lacking was any hint of
how these ideas might be applied to practical events. Markov was proudly aloof
from such matters. He wrote to Chuprov: “I am concerned only with questions of
pure analysis.… I refer to the question of the applicability of probability theory with
indifference.”

By 1913, however, Markov had apparently had a change of heart. His paper on
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Onegin was certainly a work of applied probability theory. It made a lasting
impression, perhaps in part because of the novelty of applying mathematics to
poetry. Perhaps too because the poem he chose is a treasured one, which Russian
schoolchildren recite.

From a linguistic point of view, Markov’s analysis was at a very superficial level. It
did not address the meter or rhyme or meaning of Pushkin’s verse. It treated the
text as a mere stream of letters. Simplifying further still, the letters were lumped
into just two classes, vowels and consonants.

Markov’s sample comprised the first 20,000 letters of the poem, which is about an
eighth of the total. He eliminated all punctuation and white space, jamming the
characters into one long, unbroken sequence. In the first phase of his analysis he
arranged the text in 200 blocks of 10×10 characters, then counted the vowels in
each row and column. From this tabulation he was able to calculate both the mean
number of vowels per 100-character block and the variance, a measure of how
widely samples depart from the mean. Along the way he tallied up the total number
of vowels (8,638) and consonants (11,362).

In a second phase Markov returned to the unbroken sequence of 20,000 letters,
combing through it to classify pairs of successive letters according to their pattern
of vowels and consonants. He counted 1,104 vowel-vowel pairs and was able to
deduce that there were 3,827 double consonants; the remaining 15,069 pairs must
consist of a vowel and a consonant in one order or the other.

With these numbers in hand, Markov could estimate to what extent Pushkin’s text
violates the principle of independence. The probability that a randomly chosen
letter is a vowel is 8,638/20,000, or about 0.43. If adjacent letters were

independent, then the probability of two vowels in succession would be (0.43) 2 , or
about 0.19. A sample of 19,999 pairs would be expected to have 3,731 double
vowels, more than three times the actual number. Thus we have strong evidence
that the letter probabilities are not independent; there is an exaggerated tendency
for vowels and consonants to alternate. (Given the phonetic structure of human
language, this finding is not a surprise.)

Markov did all of his counting and calculating with pencil and paper. Out of
curiosity, I tried repeating some of his work with an English translation of Onegin .
Constructing 10×10 tables on squared paper was tedious but not difficult. Circling
double vowels on a printout of the text seemed to go quickly—10 stanzas in half an
hour—but it turned out I had missed 62 of 248 vowel-vowel pairs. Markov was
probably faster and more accurate than I am; even so, he must have spent several
days on these labors. He later undertook a similar analysis of 100,000 characters of
a memoir by another Russian writer, Sergei Aksakov.

A computer reduces the textual analysis to triviality, finding all double vowels in
four milliseconds. The result of such an analysis, shown in the illustration above,
suggests that written English is rather vowel-poor (or consonant-rich) compared
with Russian, and yet the structure of the transition matrix is the same. The
probability of encountering a vowel depends strongly on whether the preceding
letter is a vowel or a consonant, with a bias toward alternation.

Markov’s Onegin paper has been widely discussed and cited but not widely read
outside of the Russian-speaking world. Morris Halle, a linguist at MIT, made an
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English translation in 1955 at the request of colleagues who were then interested in
statistical approaches to language. But Halle’s translation was never published; it
survives only in mimeograph form in a few libraries. The first widely available
English translation, created by the German scholar David Link and several
colleagues, was published only in 2006.

Link has also written a commentary on Markov’s “mathematization of writing” and
an account of how the Onegin paper came to be known outside of Russia. (A crucial
figure in the chain of transmission was George Polya, a Hungarian mathematician
whose well-known work on random walks is closely related to Markov chains.) The
statisticians Oscar Sheynin and Eugene Seneta have also written about Markov and
his milieu. Because I read no Russian, I have relied heavily on these sources.

In the accounts of Link, Seneta and Sheynin we find the dénouement of the
Markov-Nekrasov conflict. Not surprisingly, the royalist Nekrasov had a hard time
hanging onto his position after the 1917 Bolshevik revolution. He died in 1924, and
his work fell into obscurity.

Markov, as an anti-tsarist, was looked upon more favorably by the new regime, but
an anecdote about his later years suggests he remained a malcontent to the end. In
1921 he complained to the Academy that he could not attend meetings because he
lacked suitable footwear. The matter was referred to a committee. In a sign of how
thoroughly Russian life had been turned upside down, the chairman was none other
than Academician Maxim Gorky. A pair of boots was found for Comrade Markov,
but he said they didn’t fit and were “stupidly stitched.” He continued to keep his
distance from the Academy and died in 1922.
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For Markov, extending the law of large numbers to interdependent samples was the
main point of his inquiry. He bequeathed us a proof that a Markov chain must
eventually settle down to some definite, stable configuration corresponding to the
long-term average behavior of the system.

In the 100 years since 1913, Markov chains have become a major mathematical
industry, but the emphasis has shifted away from the questions that most interested
Markov himself. In a practical computational setting, it’s not enough to know that a
system will eventually converge to a stable value; one needs to know how long it
will take. With the recent vogue for huge Markov systems, even estimating the
convergence time is impractical; the best that can be expected is an estimate of the
error introduced by prematurely terminating a simulation process.

I conclude this essay with a more personal story about my own introduction to
Markov chains. In 1983 I wrote a “Computer Recreations” column for Scientific
American subtitled “A progress report on the fine art of turning literature into
drivel.” I was exploring algorithms that exploit the statistical structure of language
to generate random text in the manner of a particular author. (Some specimens
based on Eugene Onegin appear in the illustration above.)

One version of the drivel algorithm builds a transition matrix whose rows are
labeled by sequences of k letters and whose columns define the probabilities of
various letters that can follow each k -character sequence. Given an initial k -letter
seed sequence, the program uses the matrix and a random number generator to
choose the next character of the synthesized text. Then the leftmost letter of the
seed is dropped, the newly chosen character is appended to the right side, and the
whole procedure repeats. For values of k larger than 2 or 3 the matrix becomes
impractically large, but there are tricks for solving this problem (one of which
eliminates the matrix altogether).

Shortly after my article appeared, I met Sergei Kapitsa, the son of Nobel laureate
Pyotr Kapitsa and the editor of the Russian-language edition of Scientific American
. Kapitsa told me that my algorithms for generating random text all derived from
the work of A. A. Markov, decades earlier. I expressed a certain skepticism: Maybe
Markov invented the underlying mathematics, but did he apply those ideas to
linguistic processes? Then Kapitsa told me about Markov’s Onegin paper.

In a later issue of the magazine I published a contrite addendum about Markov. I
had to write it without ever having read a word of Markov’s work, and I went
overboard a little, saying that Markov “asks to what extent Pushkin’s poem remains
Pushkin’s when the letters are scrambled.” Thirty years later, I hope this column
will restore the balance. Sadly, though, I am too late to share it with Kapitsa. He
died last summer at age 84.

• Basharin, G. P., A. N. Langville and V. A. Naumov. 2004. The life and work of
A. A. Markov. Linear Algebra and its Applications 386:3–26.

• Diaconis, P. 2009. The Markov chain Monte Carlo revolution. Bulletin of the
American Mathematical Society 46:179–205.

• Kemeny, J. G., J. L. Snell and A. W. Knapp. 1976. Denumerable Markov
Chains . New York: Springer-Verlag.

• ◦ Link, D. 2006. Chains to the West: Markov’s theory of connected events
and its transmission to Western Europe. Science in Context
19(4):561–589.

First Links in the Markov Chain https://www.americanscientist.org/article/first-links-in-the-markov-chain

11 of 12 7/6/2022, 4:28 AM



◦ Link, D. 2006. Traces of the mouth: Andrei Andreyevich Markov’s
mathematization of writing.History of Science 44(145):321–348.

◦ Markov, A. A. 1913. An example of statistical investigation of the text
Eugene Onegin concerning the connection of samples in chains. (In
Russian.) Bulletin of the Imperial Academy of Sciences of St.
Petersburg 7(3):153–162. Unpublished English translation by Morris
Halle, 1955. English translation by Alexander Y. Nitussov, Lioudmila
Voropai, Gloria Custance and David Link, 2006. Science in Context
19(4):591–600.

◦ Ondar, Kh. O., ed. 1981. The Correspondence Between A. A. Markov
and A. A. Chuprov on the Theory of Probability and Mathematical
Statistics . New York: Springer-Verlag.

◦ Seneta, E. 1996. Markov and the birth of chain dependence theory.
International Statistical Review 64:255–263.

◦ Seneta, E. 2003. Statistical regularity and free will: L. A. J. Quetelet and
P. A. Nekrasov. International Statistical Review 71:319–334.

◦ Shannon, C. E. 1948. A mathematical theory of communication. Bell
System Technical Journal 27:379–423, 623–656.

◦ Sheynin, O. B. 1989. A. A. Markov’s work on probability. Archive for
History of Exact Sciences 39(4):337–377.

◦ Vucinich, A. 1960. Mathematics in Russian culture. Journal of the
History of Ideas 21(2):161–179.

First Links in the Markov Chain https://www.americanscientist.org/article/first-links-in-the-markov-chain

12 of 12 7/6/2022, 4:28 AM


