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INTRODUCTION AND REVIEW

We demand rigidly de!ned areas of doubt and uncertainty!
–Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1.1 DETERMINISTIC AND STOCHASTIC MODELS

Probability theory, the mathematical science of uncertainty, plays an ever growing
role in how we understand the world around us—whether it is the climate of the
planet, the spread of an infectious disease, or the results of the latest news poll.

The word “stochastic” comes from the Greek stokhazesthai, which means to aim
at, or guess at. A stochastic process, also called a random process, is simply one
in which outcomes are uncertain. By contrast, in a deterministic system there is no
randomness. In a deterministic system, the same output is always produced from a
given input.

Functions and differential equations are typically used to describe deterministic
processes. Random variables and probability distributions are the building blocks for
stochastic systems.

Consider a simple exponential growth model. The number of bacteria that grows in
a culture until its food source is exhausted exhibits exponential growth. A common

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

Jen Crodelle



!

! !

!

2 INTRODUCTION AND REVIEW

deterministic growth model is to assert that the population of bacteria grows at a
!xed rate, say 20% per minute. Let y(t) denote the number of bacteria present after
t minutes. As the growth rate is proportional to population size, the model is described
by the differential equation

dy
dt

= (0.20)y.

The equation is solved by the exponential function

y(t) = y0e(0.20)t,

where y0 = y(0) is the initial size of the population.
As the model is deterministic, bacteria growth is described by a function, and no

randomness is involved. For instance, if there are four bacteria present initially, then
after 15 minutes, the model asserts that the number of bacteria present is

y(15) = 4e(0.20)15 = 80.3421 ≈ 80.

The deterministic model does not address the uncertainty present in the repro-
duction rate of individual organisms. Such uncertainty can be captured by using
a stochastic framework where the times until bacteria reproduce are modeled
by random variables. A simple stochastic growth model is to assume that the
times until individual bacteria reproduce are independent exponential random
variables, in this case with rate parameter 0.20. In many biological processes, the
exponential distribution is a common choice for modeling the times of births and
deaths.

In the deterministic model, when the population size is n, the number of bacteria
increases by (0.20)n in 1 minute. Similarly, for the stochastic model, after n bacteria
arise the time until the next bacteria reproduces has an exponential probability dis-
tribution with rate (0.20)n per minute. (The stochastic process here is called a birth
process, which is introduced in Chapter 7.)

While the outcome of a deterministic system is !xed, the outcome of a stochastic
process is uncertain. See Figure 1.1 to compare the graph of the deterministic expo-
nential growth function with several possible outcomes of the stochastic process.

The dynamics of a stochastic process are described by random variables and prob-
ability distributions. In the deterministic growth model, one can say with certainty
how many bacteria are present after t minutes. For the stochastic model, questions of
interest might include:

• What is the average number of bacteria present at time t?
• What is the probability that the number of bacteria will exceed some threshold

after t minutes?
• What is the distribution of the time it takes for the number of bacteria to double

in size?
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Figure 1.1 Growth of a bacteria population. The deterministic exponential growth curve
(dark line) is plotted against six realizations of the stochastic process.

In more sophisticated stochastic growth models, which allow for births and deaths,
one might be interested in the likelihood that the population goes extinct, or reaches
a long-term equilibrium.

In all cases, conclusions are framed using probability with the goal of quantifying
the uncertainty in the system.

Example 1.1 (PageRank) The power of internet search engines lies in their ability
to respond to a user’s query with an ordered list of web sites ranked by importance
and relevance. The heart of Google’s search engine is the PageRank algorithm, which
assigns an importance value to each web page, called its page rank. The algorithm is
remarkable given the massiveness of the web with over one trillion web pages, and
is an impressive achievement of mathematics, particularly linear algebra.

Although the actual PageRank algorithm is complex with many technical (and
secret) details, the page rank of a particular web page is easily described by means of
a stochastic model. Consider a hypothetical web surfer who travels across the internet
moving from page to page at random. When the surfer is on a particular web page,
they pick one of the available hypertext links on that page uniformly at random and
then move to that page.
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The model can be described as a random walk by the web surfer on a giant graph
called the webgraph. In the webgraph, vertices (nodes) are web pages. Vertex x is
joined to vertex y by a directed edge if there is a hypertext link on page x that leads
to page y. When the surfer is at vertex x, they choose an edge leading away from x
uniformly at random from the set of available edges, and move to the vertex which
that edge points to.

The random surfer model is an example of a more general stochastic process called
random walk on a graph.

Imagine that the web surfer has been randomly walking across the web for a long,
long time. What is the probability that the surfer will be at, say, page x? To make this
more precise, let pk

x denote the probability that the surfer is at page x after k steps.
The long-term probability of being at page x is de!ned as lim

k→∞
pk

x.
This long-term probability is precisely the page rank of page x. Intuitively, the

long-term probability of being at a particular page will tend to be higher for pages
with more incoming links and smaller for pages with few links, and is a measure of
the importance, or popularity, of a page. The PageRank algorithm can be understood
as an assignment of probabilities to each site on the web.

Figure 1.2 shows a simpli!ed network of !ve pages. The numbers under each
vertex label are the long-term probabilities of reaching that vertex, and thus the page
rank assigned to that page.

Many stochastic processes can be expressed as random walks on graphs in discrete
time, or as the limit of such walks in continuous time. These models will play a central
role in this book. ◾

a
0.20
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c
0.13

b
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d
0.18

Figure 1.2 Five-page webgraph. Vertex labels show long-term probabilities of reaching each
page.
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Example 1.2 (Spread of infectious diseases) Models for the spread of infectious
diseases and the development of epidemics are of interest to health scientists,
epidemiologists, biologists, and public health of!cials. Stochastic models are
relevant because of the randomness inherent in person-to-person contacts and
population "uctuations.

The SIR (Susceptible–Infected–Removed) model is a basic framework, which has
been applied to the spread of measles and other childhood diseases. At time t, let
St represent the number of people susceptible to a disease, It the number infected,
and Rt the number recovered and henceforth immune from infection. Individuals in
the population transition from being susceptible to possibly infected to recovered
(S → I → R).

The deterministic SIR model is derived by a system of three nonlinear differential
equations, which model interactions and the rate of change in each subgroup.

A stochastic SIR model in discrete time was introduced in the 1920s by medi-
cal researchers Lowell Reed and Wade Frost from Johns Hopkins University. In the
Reed–Frost model, when a susceptible individual comes in contact with someone
who is infected there is a !xed probability z that they will be infected.

Assume that each susceptible person is in contact with all those who are infected.
Let p be the probability that a susceptible individual is infected at time t. This is equal
to 1 minus the probability that the person is not infected at time t, which occurs if
they are not infected by any of the already infected persons, of which there are It.
This gives

p = 1 − (1 − z)It .

Disease evolution is modeled in discrete time, where one time unit is the incubation
period—also the recovery time—of the disease.

The model can be described with a coin-"ipping analogy. To !nd It+1, the number
of individuals infected at time t + 1, "ip St coins (one for each susceptible), where
the probability of heads for each coin is the infection probability p. Then, the number
of newly infected individuals is the number of coins that land heads.

The number of heads in n independent coin "ips with heads probability p has a
binomial distribution with parameters n and p. In other words, It+1 has a binomial
distribution with n = St and p = 1 − (1 − z)It .

Having found the number of infected individuals at time t + 1, the number of sus-
ceptible persons decreases by the number of those infected. That is,

St+1 = St − It+1.

Although the Reed–Frost model is not easy to analyze exactly, it is straightforward
to simulate on a computer. The graphs in Figure 1.3 were obtained by simulating the
process assuming an initial population of 3 infected and 400 susceptible individu-
als, with individual infection probability z = 0.004. The number of those infected is
plotted over 20 time units. ◾
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Figure 1.3 Four outcomes of the Reed–Frost epidemic model.

1.2 WHAT IS A STOCHASTIC PROCESS?

In its most general expression, a stochastic process is simply a collection of random
variables {Xt, t ∈ I}. The index t often represents time, and the set I is the index
set of the process. The most common index sets are I = {0, 1, 2,…}, representing
discrete time, and I = [0,∞), representing continuous time. Discrete-time stochastic
processes are sequences of random variables. Continuous-time processes are
uncountable collections of random variables.

The random variables of a stochastic process take values in a common state
space  , either discrete or continuous. A stochastic process is speci!ed by
its index and state spaces, and by the dependency relations among its random
variables.

Stochastic Process

A stochastic process is a collection of random variables {Xt, t ∈ I}. The set I is
the index set of the process. The random variables are de!ned on a common state
space  .

Jen Crodelle
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Example 1.3 (Monopoly) The popular board game Monopoly can be modeled as
a stochastic process. Let X0,X1,X2… represent the successive board positions of an
individual player. That is, Xk is the player’s board position after k plays.

The state space is {1,…, 40} denoting the 40 squares of a Monopoly board—from
Go to Boardwalk. The index set is {0, 1, 2,…} Both the index set and state space are
discrete.

An interesting study is to rank the squares of the board in increasing order of
probability. Which squares are most likely to be landed on?

Using Markov chain methods (discussed in Chapter 2), Stewart (1996) shows that
the most landed-on square is Jail. The next most frequented square is Illinois Avenue,
followed by Go, whereas the least frequented location on the board is the third Chance
square from Go. ◾

Example 1.4 (Discrete time, continuous state space) An air-monitoring station
in southern California records oxidant concentration levels every hour in order to
monitor smog pollution. If it is assumed that hourly concentration levels are governed
by some random mechanism, then the station’s data can be considered a realization of
a stochastic process X0,X1,X2,…, where Xk is the oxidant concentration level at the
kth hour. The time variable is discrete. Since concentration levels take a continuum
of values, the state space is continuous. ◾

Example 1.5 (Continuous time, discrete state space) Danny receives text mes-
sages at random times day and night. Let Xt be the number of texts he receives up
to time t. Then, {Xt, t ∈ [0,∞)} is a continuous-time stochastic process with discrete
state space {0, 1, 2,…}.

This is an example of an arrival process. If we assume that the times between
Danny’s texts are independent and identically distributed (i.i.d.) exponential random
variables, we obtain a Poisson process. The Poisson process arises in myriad settings
involving random arrivals. Examples include the number of births each day on a
maternity ward, the decay of a radioactive substance, and the occurrences of oil spills
in a harbor. ◾

Example 1.6 (Random walk and gambler’s ruin) A random walker starts at the
origin on the integer line. At each discrete unit of time the walker moves either right
or left, with respective probabilities p and 1 − p. This describes a simple random walk
in one dimension.

A stochastic process is built as follows. Let X1,X2,… be a sequence of i.i.d.
random variables with

Xk =
{
+1, with probability p,
−1, with probability 1 − p,

for k ≥ 1. Set
Sn = X1 + · · · + Xn, for n ≥ 1,
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with S0 = 0. Then, Sn is the random walk’s position after n steps. The sequence
S0, S1, S2,… is a discrete-time stochastic process whose state space is ℤ, the set of
all integers.

Consider a gambler who has an initial stake of k dollars, and repeatedly wagers $1
on a game for which the probability of winning is p and the probability of losing is
1 − p. The gambler’s successive fortunes is a simple random walk started at k.

Assume that the gambler decides to stop when their fortune reaches $n (n > k),
or drops to 0, whichever comes !rst. What is the probability that the gambler is
eventually ruined? This is the classic gambler’s ruin problem, !rst discussed by math-
ematicians Blaise Pascal and Pierre Fermat in 1656.

See Figure 1.4 for simulations of gambler’s ruin with k = 20, n = 60, and p = 1∕2.
Observe that four of the nine outcomes result in the gambler’s ruin before 1,000 plays.
In the next section, it is shown that the probability of eventual ruin is (n − k)∕n =
(60 − 20)∕60 = 2∕3. ◾
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Figure 1.4 Random walk and gambler’s ruin.

Example 1.7 (Brownian motion) Brownian motion is a continuous-time, contin-
uous state space stochastic process. The name also refers to a physical process, !rst
studied by the botanist Robert Brown in 1827. Brown observed the seemingly erratic,
zigzag motion of tiny particles ejected from pollen grains suspended in water. He gave
a detailed study of the phenomenon but could not explain its cause. In 1905, Albert
Einstein showed that the motion was the result of water molecules bombarding the
particles.

The mathematical process known as Brownian motion arises as the limiting pro-
cess of a discrete-time random walk. This is obtained by speeding up the walk, letting
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the interval between discrete steps tend to 0. The process is used as a model for many
phenomena that exhibit “erratic, zigzag motion,” such as stock prices, the growth of
crystals, and signal noise.

Brownian motion has remarkable properties, which are explored in Chapter 8.
Paths of the process are continuous everywhere, yet differentiable nowhere.
Figure 1.5 shows simulations of two-dimensional Brownian motion. For this case,
the index set is [0,∞) and the state space is ℝ2. ◾

Figure 1.5 Simulations of two-dimensional Brownian motion.

1.3 MONTE CARLO SIMULATION

Advancements in modern computing have revolutionized the study of stochastic
systems, allowing for the visualization and simulation of increasingly complex
models.

At the heart of the many simulation techniques developed to generate random
variables and stochastic processes lies the Monte Carlo method. Given a random
experiment and event A, a Monte Carlo estimate of P(A) is obtained by repeating the
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random experiment many times and taking the proportion of trials in which A occurs
as an approximation for P(A).

The name Monte Carlo evidently has its origins in the fact that the mathematician
Stanislaw Ulam, who developed the method in 1946, had an uncle who regularly
gambled at the Monte Carlo casino in Monaco.

Monte Carlo simulation is intuitive and matches up with our sense of how proba-
bilities should behave. The relative frequency interpretation of probability says that
the probability of an event is the long-term proportion of times that the event occurs
in repeated trials. It is justi!ed theoretically by the strong law of large numbers.

Consider repeated independent trials of a random experiment. De!ne the sequence
X1,X2,… , where

Xk =
{

1, if A occurs on the kth trial,
0, if A does not occur on the kth trial,

for k ≥ 1. Then, (X1 + · · · + Xn)∕n is the proportion of n trials in which A occurs. The
Xk are identically distributed with common mean E(Xk) = P(A).

By the strong law of large numbers,

lim
n→∞

X1 + · · · + Xn

n
= P(A), with probability 1. (1.1)

For large n, the Monte Carlo estimate of P(A) is

P(A) ≈
X1 + · · · + Xn

n
.

In this book, we use the software package R for simulation. R is a "exible and
interactive environment. We often use R to illustrate the result of an exact, theoretical
calculation with numerical veri!cation. The easy-to-learn software allows the user
to see the impact of varying parameters and assumptions of the model. For example,
in the Reed–Frost epidemic model of Example 1.2, it is interesting to see how small
changes in the infection probability affect the duration and intensity of the epidemic.
See the R script !le ReedFrost.R and Exercise 1.36 to explore this question.

If you have not used R before, work through the exercises in the introductory tuto-
rial in Appendix A: Getting Started with R.

1.4 CONDITIONAL PROBABILITY

The simplest stochastic process is a sequence of i.i.d. random variables. Such
sequences are often used to model random samples in statistics. However, most
real-world systems exhibit some type of dependency between variables, and an
independent sequence is often an unrealistic model.

Thus, the study of stochastic processes really begins with conditional
probability—conditional distributions and conditional expectation. These will
become essential tools for all that follows.
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Starting with a random experiment, the sample space Ω is the set of all possible
outcomes. An event is a subset of the sample space. For events A and B, the condi-
tional probability of A given B is

P(A|B) = P(A ∩ B)
P(B) ,

de!ned for P(B) > 0. Events A and B are independent if P(A|B) = P(A). Equivalently,
A and B are independent if

P(A ∩ B) = P(A)P(B).

Events that are not independent are said to be dependent.
For many problems where the goal is to !nd P(A), partial information and

dependencies between events in the sample space are brought to bear. If the sample
space can be partitioned into a collection of disjoint events B1,…,Bk, then A can be
expressed as the disjoint union

A = (A ∩ B1) ∪ · · · ∪ (A ∩ Bk).

If conditional probabilities of the form P(A|Bi) are known, then the law of total prob-
ability can be used to !nd P(A).

Law of Total Probability

Let B1,…,Bk be a sequence of events that partition the sample space. That is, the
Bi are mutually exclusive (disjoint) and their union is equal to Ω. Then, for any
event A,

P(A) =
k∑

i=1

P(A ∩ Bi) =
k∑

i=1

P(A|Bi)P(Bi).

Example 1.8 According to the Howard Hughes Medical Institute, about 7% of men
and 0.4% of women are colorblind—either cannot distinguish red from green or see
red and green differently from most people. In the United States, about 49% of the
population is male and 51% female. A person is selected at random. What is the
probability they are colorblind?

Solution Let C, M, and F denote the events that a random person is colorblind, male,
and female, respectively. By the law of total probability,

P(C) = P(C|M)P(M) + P(C|F)P(F)
= (0.07)(0.49) + (0.004)(0.51) = 0.03634.

◾
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Using the law of total probability in this way is called conditioning. Here, we !nd
the total probability of being colorblind by conditioning on sex.

Example 1.9 In a standard deck of cards, the probability that the suit of a random
card is hearts is 13∕52 = 1∕4. Assume that a standard deck has one card missing.
A card is picked from the deck. Find the probability that it is a heart.

Solution Assume that the missing card can be any of the 52 cards picked uniformly at
random. Let M denote the event that the missing card is a heart, with the complement
Mc the event that the missing card is not a heart. Let H denote the event that the card
that is picked from the deck is a heart. By the law of total probability,

P(H) = P(H|M)P(M) + P(H|Mc)P(Mc)

=
(12

51

) 1
4
+
(13

51

) 3
4
= 1

4
.

The result can also be obtained by appealing to symmetry. Since all cards are
equally likely, and all four suits are equally likely, the argument by symmetry gives
that the desired probability is 1∕4. ◾

Example 1.10 (Gambler’s ruin) The gambler’s ruin problem was introduced in
Example 1.6. A gambler starts with k dollars. On each play a fair coin is tossed and the
gambler wins $1 if heads occurs, or loses $1 if tails occurs. The gambler stops when
he reaches $n (n > k) or loses all his money. Find the probability that the gambler
will eventually lose.

Solution We make two observations, which are made more precise in later chapters.
First, the gambler will eventually stop playing, either by reaching n or by reaching
0. One might argue that the gambler could play forever. However, it can be shown
that that event occurs with probability 0. Second, assume that after, say, 100 wagers,
the gambler’s capital returns to $k. Then, the probability of eventually winning $n is
the same as it was initially. The memoryless character of the process means that the
probability of winning $n or losing all his money only depends on how much capital
the gambler has, and not on how many previous wagers the gambler made.

Let pk denote the probability of reaching n when the gambler’s fortune is k. What
is the gambler’s status if heads is tossed? Their fortune increases to k + 1 and the
probability of winning is the same as it would be if the gambler had started the game
with k + 1. Similarly, if tails is tossed and the gambler’s fortune decreases to k − 1.
Hence,

pk = pk+1

(1
2

)
+ pk−1

(1
2

)
,

or

pk+1 − pk = pk − pk−1, for k = 1,…, n − 1, (1.2)
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with p0 = 0 and pn = 1. Unwinding the recurrence gives

pk − pk−1 = pk−1 − pk−2 = pk−2 − pk−3 = · · · = p1 − p0 = p1,

for k = 1,…, n. We have that p2 − p1 = p1, giving p2 = 2p1. Also, p3 − p2 = p3 −
2p1 = p1, giving p3 = 3p1. More generally, pk = kp1, for k = 1,…, n.

Sum Equation (1.2) over suitable k to obtain

n−1∑
k=1

(pk+1 − pk) =
n−1∑
k=1

(pk − pk−1).

Both sums telescope to
pn − p1 = pn−1 − p0,

which gives 1 − p1 = pn−1 = (n − 1)p1, so p1 = 1∕n. Thus,

pk = kp1 = k
n

, for k = 0,…, n.

The probability that the gambler eventually wins $n is k∕n. Hence, the probability of
the gambler’s ruin is (n − k)∕n. ◾

R : Simulating Gambler’s Ruin

The !le gamblersruin.R contains the function gamble(k,n,p), which sim-
ulates the gambler’s ruin process. At each wager, the gambler wins with prob-
ability p, and loses with probability 1 − p. The gambler’s initial stake is $k.
The function gamble returns 1, if the gambler is eventually ruined, or 0, if the
gambler gains $n.

In the simulation the function is called 1,000 times, creating a list of 1,000
ruins and wins, which are represented by 1s and 0s. The mean of the list gives
the proportion of 1s, which estimates the probability of eventual ruin.

> k <- 20
> n <- 60
> p <- 1/2
> trials <- 1000
> simlist <- replicate(trials, gamble(k,n,p))
> mean(simlist) # Estimate of probability of ruin
[1] 0.664
# Exact probability of ruin is 2/3

Sometimes, we need to !nd a conditional probability of the form P(B|A), but what
is given in the problem are reverse probabilities of the form P(A|B) and P(A|Bc).
Bayes’ rule provides a method for inverting the conditional probability.


