Solving
$$y'(t) = ay(t) + b$$
, with $y(0) = c$

Method 1: Separate Variables

Rewrite differential equation as $\frac{y'(t)}{ay(t)+b} = 1$ and integrate both sides with respect to *t* to obtain $\frac{1}{a}\ln(a y(t) + b) = t + C$ so $\ln(a y(t) + b) = at + aC$ for some constant C. Applying the exponential function to each side of the equation yields

$$a y(t) + b = e^{at+aC} = K e^{at}$$
 and $y(t) = \frac{Ke^{at}-b}{a}$. Then use $y(0) = c$ to evaluate K:
 $c = \frac{K-b}{a}$ so $K = ac + b$. Thus $y(t) = \frac{(ac+b)e^{at}-b}{a}$

Method 2: Change of Variable:

Let x(t) = ay(t) + b. Then x'(t) = ay'(t) and $y'(t) = \frac{1}{a}x'(t)$. The differential equation becomes $\frac{1}{a}x'(t) = x(t)$ or x' = ax, the classic exponential growth function whose solution is $x = C e^{at}$ for some constant C with $x(0) = C e^{a0} = C$. so $x(t) = x(0)e^{at}$ Now x(0) = ay(0) + b = ac + b. Thus $ay(t) + b = (ac + b)e^{at}$ as we obtained with Method 1.

Method 3: Treat equation as first order linear differential equation and use Integrating Factor.

Rewrite the differential equation as y' - ay = b. The integrating factor is e^{-at} . Multiply the equation by the integrating factor:

 $e^{-at} y'^{(t)} - a e^{-at} y(t) = b e^{-at}$ or $(e^{-at} y(t))' = b e^{-at}$. Integrate both sides: $e^{-at} y(t) = -\frac{b}{a}e^{-at} + C$. Finally, multiply by e^{at} to get $y(t) = C e^{at} - \frac{b}{a} = \frac{aC e^{at} - b}{a}$

Use initial condition y(0) = c to determine C as above.